4,725 research outputs found

    Acoustic energy transmission in cast iron pipelines

    Get PDF
    In this paper we propose acoustic power transfer as a method for the remote powering of pipeline sensor nodes. A theoretical framework of acoustic power propagation in the ceramic transducers and the metal structures is drawn, based on the Mason equivalent circuit. The effect of mounting on the electrical response of piezoelectric transducers is studied experimentally. Using two identical transducer structures, power transmission of 0.33 mW through a 1 m long, 118 mm diameter cast iron pipe, with 8 mm wall thickness is demonstrated, at 1 V received voltage amplitude. A near-linear relationship between input and output voltage is observed. These results show that it is possible to deliver significant power to sensor nodes through acoustic waves in solid structures. The proposed method may enable the implementation of acoustic - powered wireless sensor nodes for structural and operation monitoring of pipeline infrastructure

    Studying Migrant Assimilation Through Facebook Interests

    Full text link
    Migrants' assimilation is a major challenge for European societies, in part because of the sudden surge of refugees in recent years and in part because of long-term demographic trends. In this paper, we use Facebook's data for advertisers to study the levels of assimilation of Arabic-speaking migrants in Germany, as seen through the interests they express online. Our results indicate a gradient of assimilation along demographic lines, language spoken and country of origin. Given the difficulty to collect timely migration data, in particular for traits related to cultural assimilation, the methods that we develop and the results that we provide open new lines of research that computational social scientists are well-positioned to address.Comment: Accepted as a short paper at Social Informatics 2018 (https://socinfo2018.hse.ru/). Please cite the SocInfo versio

    Clamped closed-loop flux guides for power line inductive harvesting

    Get PDF
    Inductive harvesting from existing power lines in vehicle, industrial and infrastructure environments offers an opportunity for providing energy autonomy to sensors in a wide range of environments with high sensing interest. Flux funnelling has been shown to improve the power density of such devices by over an order of magnitude. The requirement for retrofitting onto existing power lines leads to a demand for detachable magnetic core interfaces, which introduce gaps and uncertainty to device performance. In this paper, an inductive energy harvesting device design that addresses this challenge is introduced. The design allows the interfaces to be internal to the device housing. Repeatable fixing, with reduced sensitivity to installation practicalities and controllable force is achieved by a screw-pressing mechanism, and the employment of a hard polyoxymethylene housing material. This method is utilized in an inductive power-line prototype, demonstrating power output up to 260 mW from a 40 A RMS, 500 Hz current, emulating aircraft power lines

    Power supply based on inductive harvesting from structural currents

    Get PDF
    Monitoring infrastructure offers functional optimisation, lower maintenance cost, security, stability and data analysis benefits. Sensor nodes require some level of energy autonomy for reliable and cost-effective operation, and energy harvesting methods have been developed in the last two decades for this purpose. Here, a power supply that collects, stores and delivers regulated power from the stray magnetic field of currentcarrying structures is presented. In cm-scale structures the skin effect concentrates current at edges at frequencies even below 1 kHz. A coil-core inductive transducer is designed. A fluxfunnelling soft magnetic core shape is used, multiplying power density by the square of funnelling ratio. A power management circuit combining reactance cancellation, voltage doubling, rectification, super-capacitor storage and switched inductor voltage boosting and regulation is introduced. The power supply is characterised in house and on a full-size industrial setup, demonstrating a power reception density of 0.36 mW/cm3, 0.54 mW/cm3 and 0.73 mW/cm3 from a 25 A RMS structural current at 360 Hz, 500 Hz and 800 Hz respectively, corresponding to the frequency range of aircraft currents. The regulated output is tested under various loads and cold starting is demonstrated. The introduced method may enable power autonomy to wireless sensors deployed in current-carrying infrastructure

    Shaped coil-core design for inductive energy collectors

    Get PDF
    Coil design is important for maximizing power density in inductive energy harvesting as well as in inductive power transfer. In this work, we present a study of coil performance, based on simulated flux distributions corresponding to a real aircraft application case. The use of funnel-shaped soft magnetic cores boosts magnetic flux density by flux concentration and allows the use of a smaller diameter coil. This reduces the transducer mass as well as the coil resistance (R COIL ), thereby increasing the power density. Analysis and simulation shows a fifty-fold power density increase from moderate funneling and another two-fold increase by coil size optimization. Results are compared with experimental measurements presented in [1] which demonstrate a 36μW/g(106μW/cm 3 ) power density from alternating environmental magnetic fields in the 10μT/300 Hz range

    Inductive power line harvester with flux guidance for self-powered sensors

    Get PDF
    Self-powered sensors are expected to enable new large-scale deployment and location access capabilities for sensor systems. Energy harvesting devices have been shown to provide adequate power densities but their dependence on very specific environmental conditions restricts their applicability. Energy harvesting from power line infrastructure offers an architecture for addressing this challenge, because such infrastructure is widely available. In this paper an inductive power line harvester concept is presented, based on a flux concentration approach adapted to a closed-loop core geometry. Flux concentration is studied by simulation, showing a 26% flux increase using a 1:3 geometrical concentration ratio in a closed-loop core. A 20×20×25 mm prototype with a U-shaped soft-core sheet and a 200-turn Cu coil around a 5 mm diameter, 20 mm long soft-core rod is introduced. The total device volume is 9.1 cm 3 . Characterization results on a power line evaluation setup for currents up to 35 A RMS and a 50 Hz – 1 kHz range are presented. Power between 2.2 mW (50 Hz) and 233 mW (1 kHz) is demonstrated on an ohmic load, from a 10 A RMS power line current, employing impedance matching with reactance cancellation. The corresponding power densities are 0.24 mW/cm 3 and 25 mW/cm 3 respectively, per total device volume. This performance is adequate for enabling self-powered wireless sensor networks installed along power distribution lines

    Response of Phytoplankton Photophysiology to Varying Environmental Conditions in the Sub-Antarctic and Polar Frontal Zone

    Get PDF
    Climate-driven changes are expected to alter the hydrography of the Sub-Antarctic Zone (SAZ) and Polar Frontal Zone (PFZ) south of Australia, in which distinct regional environments are believed to be responsible for the differences in phytoplankton biomass in these regions. Here, we report how the dynamic influences of light, iron and temperature, which are responsible for the photophysiological differences between phytoplankton in the SAZ and PFZ, contribute to the biomass differences in these regions. High effective photochemical efficiency of photosystem II (F 0 q/F 0 mw0.4), maximum photosynthesis rate (PB max), light-saturation intensity (Ek), maximum rate of photosynthetic electron transport (1/tPSII), and low photoprotective pigment concentrations observed in the SAZ correspond to high chlorophyll a and iron concentrations. In contrast, phytoplankton in the PFZ exhibits low F 0 q/F 0 m (* 0.2) and high concentrations of photoprotective pigments under low light environment. Strong negative relationships between iron, temperature, and photoprotective pigments demonstrate that cells were producing more photoprotective pigments under low temperature and iron conditions, and are responsible for the low biomass and low productivity measured in the PFZ. As warming and enhanced iron input is expected in this region, this could probably increase phytoplankton photosynthesis in this region. However, complex interactions between the biogeochemical processes (e.g. stratification caused by warming could prevent mixing of nutrients), which control phytoplankton biomass and productivity, remain uncertain

    Photoprotection of sea-ice microalgal communities from the east antarctic pack ice

    Full text link
    All photosynthetic organisms endeavor to balance energy supply with demand. For sea-ice diatoms, as with all marine photoautotrophs, light is the most important factor for determining growth and carbon-fixation rates. Light varies from extremely low to often relatively high irradiances within the sea-ice environment, meaning that sea-ice algae require moderate physiological plasticity that is necessary for rapid light acclimation and photoprotection. This study investigated photoprotective mechanisms employed by bottom Antarctic sea-ice algae in response to relatively high irradiances to understand how they acclimate to the environmental conditions presented during early spring, as the light climate begins to intensify and snow and sea-ice thinning commences. The sea-ice microalgae displayed high photosynthetic plasticity to increased irradiance, with a rapid decline in photochemical efficiency that was completely reversible when placed under low light. Similarly, the photoprotective xanthophyll pigment diatoxanthin (Dt) was immediately activated but reversed during recovery under low light. The xanthophyll inhibitor dithiothreitol (DTT) and state transition inhibitor sodium fluoride (NaF) were used in under-ice in situ incubations and revealed that nonphotochemical quenching (NPQ) via xanthophyll-cycle activation was the preferred method for light acclimation and photoprotection by bottom sea-ice algae. This study showed that bottom sea-ice algae from the east Antarctic possess a high level of plasticity in their light-acclimation capabilities and identified the xanthophyll cycle as a critical mechanism in photoprotection and the preferred means by which sea-ice diatoms regulate energy flow to PSII. © 2011 Phycological Society of America
    • …
    corecore